Power Components Mean Values Determination Using New Ip-Iq Method for Transients (2024)

1. Introduction

It is known that in power system theory, by now the instantaneous reactive power theory (IRP) raised by Akagi, Kanazawa, and Nabae, and Czarnecki’s currents’ physical component theory (CPC) based on the Budeanu method, are the most widely used [1,2,3]. Both line disturbances and the features of the connected appliances have an impact on the quality of the electrical energy that is extracted from the network. We can list a variety of power quality indices and events among the first ones, such as flicker, sags, transients, and slot harmonics. Reactive power compensation devices, particularly active power filters, have effectively utilized their application. Appliances, on the other hand, have the ability to overload the network with a variety of waveforms, non-linearities, and higher harmonics. For instance, the third harmonic current produced by switched-mode power supplies, which are often used in television sets, personal computers, etc., is almost the same size (80–90%) as the fundamental frequency component. In power systems, the range of harmonic sources can be represented by these load types taken together. Note that even seemingly small adjustments to control strategies and parameter settings can have a big influence on the creation of a harmonic current. Only the active power component is physically significant in an AC power network; the other components, apparent, active, blind, and distortion, make up the electric power features [4,5]. The apparent power is the sum of the active, blind, and distortion powers. Its size needs to be considered in the design because it is transferred from the source to the load. The measurement of blind and/or distortion power is related with certain challenges and cannot be accomplished using a conventional ’sinusoidal´ wattmeter (power meter). However, the active power may be determined and measured rather easily. The active power can be represented by the scalar product of the voltage and current phasors, and the blind power by the vector product of them, when rotating phasors of instantaneous time waveforms of voltages and currents are substituted in complex plains [6,7]. It is necessary to know the phase displacement between phasors in order to use this calculus. Determining the performance power factor’s value is likewise related to this. Although both approaches have been modified, the majority of methods for an instantaneous computation of power components as a function of time in steady states are described in the previously mentioned literature [3]. However, in transient conditions, it is frequently necessary to ascertain the average value of the apparent, active, blind, and distortion power components. As a result, the study in this paper deals with the calculation of the mean value of each power component in a single step in the transient states of PEES, but it does not use Akagi’s p-q theory as in [8]. Numerous studies [9,10,11,12] explain transient phenomena and Fourier analysis, particularly in power electrical and electronic systems. The Fourier transform is a helpful technique for transient solutions centered on harmonic analysis, as is made evident in [8]. However, during transient situations, power component mean values are not solved in any of ref. [1,2,3,4,5,6,7].

This paper introduces the advanced power theory of electrical systems with non-sinusoidal voltages and currents, based on the concept of current physical components (CPCs), and compares it to the instantaneous reactive power theory (IRP) based on the Clarke transform [13]. CPCs includes single- and three-phase systems with linear, time-invariant (LTI), and harmonic generating loads. Work [14] brings a new physical interpretation of the reactive power, while work [15] describes physical phenomena that affect the effectiveness of the power components’ transfer. A present point of view on the instantaneous reactive power theory is given in [16]. Unlike the id-iq method [17,18] that works in a rotary coordinate system, the ip-iq method works with a stationary coordinate system.

Unfortunately, no one from the mentioned works [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18] solves the problem of an average value of apparent, active, blind, and distortion power components in transient states.

In the article, there are the following four sections (besides the introduction), including:

-

The ip-iq method for the determination of the apparent, active, blind, and distortion powers’ mean values during transients under the harmonic supply and linear LTI load;

-

The determination of the power components’ mean values during transients under the harmonic supply and non-linear load and under transient conditions caused by a step change in the load;

-

The determination of the power components’ mean values during transients under the nonharmonic supply and LTI load and under transient conditions caused by a switch-over decreased load;

-

The application of the ip-iq method for a three-phase power system under steady and transient states in Matlab/Simulink;

-

A modeling and real-time (RT) simulation for single- and three-phase supply systems under different steady and transient conditions using a HIL Simulator Plecs RT Box [19];

-

A discussion of each mode of operation, also to time the waveform of each power component during transient, and a conclusion.

2. Ip-Iq Method Used for Apparent, Active, Blind, and Distortion Power Components

The aim is to determine individual components of power as we know them from the classical power theory [2,4]. So

  • Savproportional to Urms×Irms,

  • Pavproportional to Urms×Ip,rms,

  • Qavproportional to (Urms×Iq,rms),

  • Davproportional to (Urms×I,rms),

  • and consequently

  • PFas ratio of Pav/Sav,

  • THD—as ratio of Dav/Sav,

and those as quasi-instantaneous quantities in any k-steps.

So, the first goal is the determination of the PavandQav components using ip-iq currents. Based on definitional relationships, the instantaneous power is given as [4]

st=utit

where ut=Umaxsinωt and it is the calculated current course.

And for its mean value

Sav=UrmsIrms.

Each harmonic waveform can be decomposed into a sine and cosine component. So, for the harmonic supply and linear RL load

it=Imaxsinωtφ=ipt+iqt=Ipsinωt+Iqcosωt

where

Imax=UmaxZ;Z=R2+ωL2;Ip=Imaxsinπ2φandIq=Imaxsin0φ.

Similarly, for the power components

st=utipt+iqt=pt+qt.

A graphic presentation is shown in Figure 1.

Thus, similarly as Sav in (2)

Pav=UrmsIp,rms

and

Qav=UrmsIq,rms.

Then the distortion power mean value (if exists) will be

Dav=Sav2Pav2Qav2.

Although the Pav,Qav,Dav power components are significant electrical quantities in PEES systems, determining their instantaneous size during transients is not so simple, as we can see in the next sections.

During Transients

Since the input voltage is shifted by an angle α

ut=Umsinω1t+α

then

iRLt=Imcosω1t+αφ1cosαφ1et/τ1+I0et/τ1.

iRLt=Imsinω1t+αφ1sinαφ1et/τ1+I0et/τ1.

where Im=UmZ and α is a voltage shift and I0 is the initial value of the current.

Transient components of iRLt are

Imcosαφ1et/τ1+I0et/τ1.

Ip,rmsk1T0TiptdtandIq,rmsk=1T0Tiqtdt,

Using the movRMS function, we can calculate the RMS value of the currents both during the transient and steady state, Figure 2.

In generally, in the case of non-harmonic current,

Irms=I1,rms2+n=2In,rms2

But I1,rmsk can be determined by [8], where there are more ways to do it:

-

Using continuous-time filter;

-

Using digital filtering;

-

Using integral calculus;

-

Using a discrete Fourier transform;

-

Using artificial neural networks [20].

The use of the continuous-time filter seems to be the fastest way to process a signal, but it requires the use of auxiliary hardware for conversion and processing (DAC-ADC converter, multiplier, integrator, etc.). So, the time of calculation also depends on the settling time, time of conversion of DAC converter, and soon. The last two items are not directly bound to the ip-iq method.

By this, we can use Fourier coefficients for the maximal value calculation of ip-iq currents and their time waveforms.

The first term in Equation (11)

Irmst=1T0Ti2tdtusingmovRMSIrmsk

or calculating the sliding window using the square or (more exactly) meander rule

Irmsk=1Ni02+iN22k=1N1i2k.

And the first term under sqrt in (11)

I1,rmst=1T0Ti12tdtusingmovRMSI1,rmsk.

So, for single power components, we can write:

For active power

Pavt=1T0Tutiptdt=1T0Tu2tip2tdtusingmovRMSPavk=UrmskIp,rmsk.

For other power components analogically:

For blind reactive power

Qavk=UrmskIq,rmsk

although

Q(1)avt1T0TUmaxsinωtI1q,maxcosωt=0!

For apparent power

Savk=UrmskIrmsk

It can be also calculated as

S~avk=Pav2k+Qav2k

which is, in steady state, the same.

Since the distortion reactive power is, in steady state, equal to zero, distortion power in the transient can be determined as

Davk=UrmskId,rmsk=UrmskIrms2kI1,rms2k

And it can also be calculated as

Davk=Sav2kPav2kQav2k

In practical simulation or implementation, the distortion power component Davk, however, is not zero due to the different calculated time of Irmsk and Ip,rmsk or Iq,rmsk, respectively. The principal time waveforms of the power components S, P, Q, D (k) by using the movRMS method are shown in both transient states’ start-up (a) and recovery (b), Figure 3.

As can be seen from the figure, the apparent power (black) is not equal to the square of the sum of the active and reactive ones (blue dashes). Let us name the difference between these power components the fictitious distortion component (purple).

Let us note, in this regard, using the Fourier transform on Equation (9a) for the total transient current waveform

iRLt=UmZsinω1t+αφ1sinαφ1et/τ1+I0et/τ1

which consists of steady and transient components (two-times et/τ1). Since the equation consists of steady- and transient-state components, we can write

FiRLjω=Fststjω+Ftransjω=UmZ0cosω1tφ1ejωtdt+UmZ0cosφ1et/τ1ejωtdt.

Taking into account Tabs in [8], the Fourier transform of the iRLt function can be derived (a simplified approach [8]), namely, using the time-shift rule

ft±t1ejωt1Ff(t)

where t1=φ1ω1.

Then, for the steady-state component

Fststjω=ejφ1Fststutcosω1t=UmZejφ1Fstst12ejω1t+ejω1t=UmZ12ejφ1Fujωω1+Fujω+ω1=UmZ12ejωφ1ω1πδωω1+1jωω1+πδω+ω1+1jω+ω1=UmZπ2δωω1+δω+ω1ejφ1+jωω12ω2ejφ1.

And, for the transient component

Ftransjω=FtransUmZcosφ1et/τ1=UmZcosφ11jω+1τ1.

This equation shows the distortion component is not quite fictitious.

(a)

In the case of harmonic supply and non-harmonic current:

The total non-harmonic current can be decomposed

Irms=I1,rms2+k=2Ik,rms2

We need to know Irms, I1,rms to determine the rms value of the sum of higher harmonics

k=2Ik,rms2=I,rms=I2rmsI1,rms2

By this, we can use Fourier coefficients for the maximal value calculation of ipiq currents and their time waveforms

I1p,maxb1=2T0Titsinωtdti1pt=I1p,maxsinωt

The time waveforms of decomposed current components are shown in Figure 4.

And

I1q,maxa1=2T0Titcosωtdti1qt=I1q,maxcosωt

Using Equations (13)–(16), we obtain the active and blind reactive power components Sav(k)P(1)avt, Q(1)avt, and Davk.

  • (b) In the case of non-harmonic supply and quasi-harmonic current:

A classical non-harmonic rectangular time waveform causes under R-L load a non-harmonic current, Figure 5.

The voltage and the current can be decomposed into p- and q- components.

Since the supply voltage is non-harmonic

Urms=U1,rms2+k=2Uk,rms2

We need to know Urms, U1,rms to determine the rms value of the sum of higher harmonics

k=2Uk,rms2=U,rmsU2rmsU1,rms2.

The first term under sqrt

Urmsk1T0Tutdt,usingmovRMS

and

U1,rmsk1T0Tu1tdt,usingmovRMS

By this, we can use Fourier coefficients for the maximal value calculation of the up,uq voltages and their time waveforms

U1p,maxb1=2T0Tutsinωtdtu1p(t)=U1p,maxsinωt

U1q,maxb1=2T0Tutcosωtdtu1q(t)=U1q,maxcosωt

The time waveforms of the decomposed current components are shown in Figure 6.

Figure 6 shows non-harmonic input voltage (inverter voltage) u(t), its fundamental harmonic, and its decomposition into u1p, u1q components (a), and also the decomposition of the total current fundamental harmonic into i1p, i1q components, respectively. Decomposition (a) follows Equations (29)–(30) and decomposition (b) follows Equations (23) and (24), in which the ip-iq method is included. So, again using Equations (13)–(16), we obtain the active and blind reactive power components Sav(k)P(1)avt, Q(1)avt, and Davk.

The calculated power components Savk, Pavk, Qavk, and Davk are applied in the next application section.

While for a non-symmetric system, the inequality holds

xat+xbt+xct0,

because of including a zero-phase sequence component x0t into the Clarke transform [13].

xα,βtx0t=Ct1aa2121212xatxbtxct;orxαtxβtx0t=13211033111xatxbtxct.

where a=−1/2 +3/2 and Ct is the transformation constant.

We can also use the method of symmetrical components x1,2,0t, [7,11].

x1tx2tx0t=131aa21a2a111xatxbtxct.

The inverse transformation into the a,b,c system can be obtained using the inverse transformation matrix. Consequently, the power in a non-symmetrical system also features an instantaneous zero-sequence component p0t.

pα,βtqα,βtp0t=32uαtuβt0uβtuαt000u0t3iαtiβti0t.

The phase power components pa,b,ct can be expressed by the inverse transform of Equation (34).

3. Application of ip-iq Theory on Three-Phase Network and Linear Time-Invariant Load—Simulation Using Matlab/Simulink

The three-phase network and symmetric linear time-invariant R-L load can be connected between each other:

-

Directly, without any means of interconnection;

-

Employing a rectifier (controlled, uncontrolled);

-

Employing an inverter (direct, indirect, or cycloconverter).

By the simulation of some of them, we can confirm the theoretical derivation performed in the previous section.

3.1. Simulation Using Matlab/Simulink

There will be simulated transient states during the start-up and during a change in the load of the chosen connection of the systems. As investigated, the quantities are time courses of the power components’ mean values Savk, Pavk, Qavk, and Davk.

A.

Direct connection

Parameters of the system for steady states at t<0.0;0.1> and at t<0.1;0.16> are given in Table 1.

The start-up and load change simulation have been performed using Matlab/Simulink. The time courses of the average power components are shown in Figure 7.

The graphic interpretations of the Fourier transform amplitude spectra of both the steady-state and transient components of the current are shown in Figure 8 in the absolute units.

Since the time constant τ1 is rather small (cca 2.4 ms), i.e., smaller than one-fourth of the time period (Table 1), the predominant component is the steady-state one.

3.2. Case of Non-Symmetrical Load

The load asymmetry has been provided by a different value of resistor in one phase. The resistors of the asymmetrical phase c are Rc=10Ω and 20 Ω. Parameters for both steady states are given in Table 2.

Power component average values, computed in Matlab/Simulink, are given in Table 2.

Network voltages and currents in a,b,c,N coordinate system at steady states are shown in Figure 9a,b.

In this case, the network neutral is connected to the load neutral. Therefore, current IN flows through the neutral wire despite the voltage zero-sequence being zero. It is interesting that active power in the steady state after the transient is smaller than before, Figure 9b, although load resistance in phase “c” is changed to double. But the phase current ic and the current of neutral IN are in antiphase (shifted by 180 °el.), Figure 9a. So, the power loss (Joule loss) in the neutral wire acts negatively on the load active power. During the transient state, waveforms feature oscillating characters, and the power component Po is zero, due to the zero-sequence component Uo equal to zero.

B.

System with the connection of a diode rectifier

Let us consider systems supplied from a harmonic network and equipped with a three-phase diode rectifier with a linear resistive R-L load, Figure 10.

Parameters for steady states at t<0.0;0.1> and at t<0.1;0.16> are given in Table 3.

The start-up and load change simulation have been performed using Matlab/Simulink. The time courses of average power components are shown in Figure 11.

C.

System with the connection of a controlled rectifier

Let us consider systems supplied from a harmonic network and equipped with a three-phase controlled rectifier and a linear resistive R-L load, Figure 12.

Parameters for steady states at t<0.0;0.1> and at t<0.1;0.16> are given in Table 4.

The start-up and load change simulation have been performed using Matlab/Simulink. The time courses of average power components are shown in Figure 13.

D.

Three-phase inverter type of VSI and linear RL load

Let us consider systems supplied from a harmonic network and equipped with a three-phase VSI inverter and a linear resistive R-L load, Figure 14.

Parameters for steady states at t<0.0;0.1> and at t<0.1;0.2> are given in Table 5.

The start-up and load change simulation have been performed using Matlab/Simulink. The time courses of average power components are shown in Figure 15.

4. Verification of ip-iq Theory by a HIL Simulation (in Real Time)

A HIL simulator presented by the Plexim RT Box 1 with CPU cores 2 x ARM Cortex-A9, 1 GHz, is suitable for HIL simulations of power electronic circuits of moderate complexity and for single-tasking control prototyping [19]. The block scheme for interconnection of the microprocessor board with the RT Box and its assembly is shown in Figure 16.

There are simulated transient states during the start-up and during the changes in the load as they have been chosen in Section 2. As investigated, the quantities are time courses of the power components’ mean values Savk, Pavk, Qavk, and Davk.

A.

Direct connection of RL load to the network

Parameters of the system for steady states at t<0.0;0.1> and at t<0.1;0.16> are given in Table 1 above.

The start-up and load change simulation have been performed using Matlab/Simulink. The time courses of average power components are shown in Figure 17.

B.

System with the connection of a diode rectifier

Let us consider systems supplied from a harmonic network and employing a three-phase diode rectifier with a linear resistive R-L load (Figure 9 above). Parameters for steady states at t<0.0;0.1> and at t<0.1;0.16> are given in Table 3 (in Section 2 above).

The start-up and load change simulation have been performed using Matlab/Simulink. The time courses of average power components are shown in Figure 18.

5. Discussion and Conclusions

This paper shows the behavior of power electronic systems, as well as power systems, under transient states presented by a step change of the load or another quantity, using the instantaneous reactive power ip-iq method. The simulation was performed under different types of loads and supply voltages (linear and non-linear load, sinusoidal and non-sinusoidal voltage). The simulation results are shown with the quasi-instantaneous determination of power components’ mean values, including the phase shift of fundamentals (resp. cos φ1) and total power factor PF. The waveforms of apparent, active, blind, and distorted power components are displayed in the timeline. It has been shown that the distortion power components are generated during the transient under harmonic supply conditions and linear load.

The moving average and moving rms methods have been used to determine a power component’s mean values in the next calculation step, directly from measurable phase current and voltage quantities.

The results are comparable with those obtained using the p-q method (IRP), published by the authors in paper [8].

A comparison of the working-out results of the HIL and Matlab/Simulink has shown that these are nearly identical. The essential difference is in the time of the computation. In the case of HIL, the quantities sensing and computation of power components, including the moving RMS, takes about 5 microseconds, which is practically real-time, unlike the Matlab/Simulink simulation.

Finally, while the p-q method does not allow a direct application to a single-phase system or an unbalanced load, the ip-iq method using decomposition into Fourier coefficients yields results like the p-q method without the mentioned disadvantages. Moreover, neither the IRP method nor CPC method investigates the instantaneous power components in transient states which is the main contribution of this paper.

Author Contributions

Conceptualization, B.D.; Methodology, B.D.; Software, S.K. and J.Š.; Validation, S.K. and J.Š.; Investigation, J.Š.; Writing—original draft, B.D.; Writing—review & editing, S.K. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by VEGA 1/0314/24 “Research of a system for active management of electrical energy using battery storage system” and APVV-22-0330 “Research of a system for active and optimal management of electrical energy using battery storage system”.

Data Availability Statement

Data is contained within the article.

Acknowledgments

While the p-q method does not allow direct application to a single-phase system or an unbalanced load, the ip-iq method using decomposition into Fourier coefficients yields results like the p-q method without the mentioned disadvantages.

Conflicts of Interest

The authors declare no conflict of interest.

Nomenclature

PEESpower electrical and electronic systems
AVE (ave)average value or function
RMS (rms)root mean square value or function
Nnumber of sliding window points
CTClarke transformation constant
p-qinstantaneous active and reactive power method
ip-iqinstantaneous active and reactive power method
p(t), q(t)instantaneous active and reactive power components
uαt,uβtphase voltages in α,β-coordinate system
iαt,iβtphase currents in α,β-coordinate system
A1the amplitude of phase current
Savapparent power
Pavactive power
Qavreactive blind power
Davreactive distortion power
PFpower factor
THDtotal harmonic distortion
P1avactive power of fundamental harmonic
P0avactive power of a zero-sequence component
SavkDav(k)discretized power components at k- time instants
xα,β,0tcomponents of a non-symmetrical system in α,β- coordinates
xa,b,ctcomponents in a,b,c- coordinates
u0t,i0tvoltage and current zero-sequence power components
iNtneutral wire current
ihh(t)sum of high harmonics
ist-ststeady-state current component
φ1, cosφ1, τ1phase shift, PF of fundamental harmonic
Z,R,Limpedance, resistance, and inductance of the load

References

  1. Akagi, H.; Kanazawa, Y.; Nabae, A. Generalized Theory of the Instantaneous Reactive Power in Three-Phase Circuits. In Proceedings of the IPEC Conference, Tokyo, Japan, 27–31 March 1983; pp. 1375–1386. [Google Scholar]
  2. Czarnecki, L.S. Currents’ Physical Components (CPC) Concept: A Fundamental of Power Theory. In Proceedings of the International School on Non-sinusoidal Currents and Compensation, Lagow, Poland, 10–13 June 2008; pp. 1–11. [Google Scholar]
  3. Guo, J.; Xiao, X.N.; Tao, S. Discussion on Instantaneous Reactive Power Theory and Current Physical Component (CPC) Theory. In Proceedings of the 15th International Conference on Harmonics and Quality of Power, Hong Kong, China, 17–20 June 2012; pp. 427–432. [Google Scholar] [CrossRef]
  4. Dugan, R.C.; McGranaghan, M.F.; Santoso, S.; Beaty, H.W. Electrical Power Systems Quality, 2nd ed.; McGrow-Hill Copyrighted Material; McGraw Hill: Maidenhead, UK, 2004. [Google Scholar]
  5. Kryltcov, S.; Makhovikov, A.; Korobitcyna, M. Novel Approach to Collect and Process Power Quality Data in Medium-Voltage Distribution Grids. Symmetry 2021, 13, 460. [Google Scholar] [CrossRef]
  6. Varga, L.; Hlubeň, D. Measuring Methods in Electro-Energetics; Technical University Košice: Košice, Slovakia, 2002; 175p, Chapter 1; pp. 15–21. (In Slovak) [Google Scholar]
  7. Kouzou, A.; Ismeil, M.A.; Abu Rub, H.; Ahmed, S.M.; Mahmoudi, M.O.; Boucherit, M.S.; Kennel, R. Discussions on the Instantaneous Reactive Power Theory Terms in the General Case Based on the Symmetric Components. In Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ’12), Santiago de Compostela, Spain, 28–30 March 2012. [Google Scholar]
  8. Dobrucký, B.; Koňarik, R.; Beňová, M.; Praženica, M. A New Modified Non-Approximative Method for Dynamic Systems Direct Calculation. Appl. Sci. 2023, 13, 4162. [Google Scholar] [CrossRef]
  9. Shenkman, A.L. Transient analysis using the Fourier transform. In Transient Analysis of Electric Power Circuits Handbook; Springer: Dordrecht, The Netherlands, 2005; Chapter 4; pp. 213–263. ISBN -10 0-387-28799-X. [Google Scholar]
  10. Bai, H.; Mi, C. Transients of Modern Power Electronics; John Wiley & Sons, Ltd.: Chichester, UK, 2011; ISBN 978-0-470-68664-5. [Google Scholar]
  11. Peretyatko, L.; Spinul, L.; Shcherba, M. Theoretical Fundamentals of Electrical Engineering, Part I; IS Polytechnic Institute: Kiev, Ukraine, 2021; Chapters 5–6; pp. 36–54. [Google Scholar]
  12. Kreyszig, E.; Kreyszig, H.; Norminton, E.J. Advanced Engineering Mathematics; John Wiley & Sons, Inc.: New York, NY, USA, 2011; Chapter 6; pp. 203–255. ISBN 978-0-470-45836-5. [Google Scholar]
  13. Mohan, N.; Undeland, T.M.; Robbins, W.P. Power Electronics: Converters, Applications, and Design, 3rd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2003. [Google Scholar]
  14. Hartman, M.T. Why the new physical interpretations of the reactive power on terms of the CPC power theory is not true? In Proceedings of the International Conference CPE ‘07on Compatibility in Power Electronics, Gdansk, Poland, 29 May–1 June 2007. [Google Scholar] [CrossRef]
  15. Czarnecki, L.S. Physical Phenomena that Affect the Effectiveness of the Energy Transfer in Electrical Systems. In Proceedings of the 20th International Scientific Conference on Electric Power Engineering (EPE), Kouty nad Desnou, Czech Republic, 15–17 May 2019. [Google Scholar] [CrossRef]
  16. Herrera, R.S.; Salmerón, P. Present point of view about the instantaneous reactive power theory. IET Power Electron. 2009, 2, 484–495. [Google Scholar] [CrossRef]
  17. Soares, V.; Verdelho, P.; Marques, G.D. An instantaneous active and reactive current component method for active filters. IEEE Trans. Power Electron 2000, 15, 660–669. [Google Scholar] [CrossRef]
  18. Verdelho, P.C. Voltage type reversible rectifiers control methods in unbalanced and nonsinusoidal conditions. In Proceedings of the IECON 98—24th Annual Conference of the IEEE Industrial Electronics Society, Aachen, Germany, 31 August–4 September 1998. [Google Scholar] [CrossRef]
  19. Plexim. A HIL Simulator on Every Engineer’s Desk. Available online: https://www.plexim.com/products/rt_box/rt_box_1 (accessed on 26 March 2024).
  20. Osowski, S. Neural network for estimation of harmonic components in a power system. IEE Proc. GTD 1992, 139, 129–135. [Google Scholar] [CrossRef]

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (1)

Figure 1.Decomposition of time waveforms of harmonic current it into a sine and cosine component (a) and power components’ time waveforms (b).

Figure 1.Decomposition of time waveforms of harmonic current it into a sine and cosine component (a) and power components’ time waveforms (b).

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (2)

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (3)

Figure 2.Principal time waveform of Irms(k) by using of movRMS method: step k=0.5 ms, length of sliding window l=T/2=0.01 s.

Figure 2.Principal time waveform of Irms(k) by using of movRMS method: step k=0.5 ms, length of sliding window l=T/2=0.01 s.

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (4)

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (5)

Figure 3.Principal time waveforms of power components S,P,Q,D(k) by using movRMS method in transient states start-up (a) and hypothetical recovery (b).

Figure 3.Principal time waveforms of power components S,P,Q,D(k) by using movRMS method in transient states start-up (a) and hypothetical recovery (b).

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (6)

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (7)

Figure 4.Decomposition of non-harmonic it into sine and cosine components in diode rectifier (a) and in controlled thyristor rectifier (b).

Figure 4.Decomposition of non-harmonic it into sine and cosine components in diode rectifier (a) and in controlled thyristor rectifier (b).

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (8)

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (9)

Figure 5.Non-harmonic rectangular time waveform of input voltage and responding non-harmonic time waveform of current.

Figure 5.Non-harmonic rectangular time waveform of input voltage and responding non-harmonic time waveform of current.

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (10)

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (11)

Figure 6.Decomposition of non-harmonic input voltage ut (a), resp. it (b) into a sine and cosine components.

Figure 6.Decomposition of non-harmonic input voltage ut (a), resp. it (b) into a sine and cosine components.

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (12)

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (13)

Figure 7.Time courses of average power components during start-up and load changing in direct connection.

Figure 7.Time courses of average power components during start-up and load changing in direct connection.

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (14)

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (15)

Figure 8.Amplitude spectra of steady-state (a) and transient component (b) under R-L load in transient phenomenon at switch-on of system.

Figure 8.Amplitude spectra of steady-state (a) and transient component (b) under R-L load in transient phenomenon at switch-on of system.

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (16)

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (17)

Figure 9.Network phase currents (a), and corresponding to them, power components (b) under symmetrical network supplying non-symmetrical linear RL load.

Figure 9.Network phase currents (a), and corresponding to them, power components (b) under symmetrical network supplying non-symmetrical linear RL load.

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (18)

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (19)

Figure 10.The basic scheme of the considered systems—diode rectifier.

Figure 10.The basic scheme of the considered systems—diode rectifier.

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (20)

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (21)

Figure 11.Time courses of average power components during start-up and load changing in diode connection.

Figure 11.Time courses of average power components during start-up and load changing in diode connection.

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (22)

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (23)

Figure 12.The basic scheme of the considered systems—controlled rectifier.

Figure 12.The basic scheme of the considered systems—controlled rectifier.

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (24)

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (25)

Figure 13.Time courses of average power components during start-up and load changing in controlled rectifier connection.

Figure 13.Time courses of average power components during start-up and load changing in controlled rectifier connection.

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (26)

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (27)

Figure 14.The basic scheme of the considered systems—VSI inverter.

Figure 14.The basic scheme of the considered systems—VSI inverter.

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (28)

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (29)

Figure 15.Time courses of average power components during start-up and load changing.

Figure 15.Time courses of average power components during start-up and load changing.

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (30)

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (31)

Figure 16.A block scheme of HIL simulator type of RT Box 1 (a), and its assembly photo (b).

Figure 16.A block scheme of HIL simulator type of RT Box 1 (a), and its assembly photo (b).

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (32)

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (33)

Figure 17.Time courses of average power components during start-up and load changing.

Figure 17.Time courses of average power components during start-up and load changing.

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (34)

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (35)

Figure 18.Time courses of average power components during start-up and load changing.

Figure 18.Time courses of average power components during start-up and load changing.

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (36)

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (37)

Table 1.Parameters of RL load for steady states before and after load change in direct connection.

Table 1.Parameters of RL load for steady states before and after load change in direct connection.

Load R[Ω]L[mH]ZΩτ[ms]φ[°el.]cosφsinφ[]
before 18.443.9423.092.3836.870.80.6
after 36.843.9439.301.1920.560.940.35

Urms=230V,f=50Hz,threephasesystem.

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (38)

Table 2.Load parameters for steady states before and after load change in case of non-symmetrical load.

Table 2.Load parameters for steady states before and after load change in case of non-symmetrical load.

LoadRa[Ω]L[mH]ZΩτa[ms]φa[°el.]cosφasinφa[]
before 1043.9317.044.3954.070.590.81
after 2043.9324.292.1934.610.820.57
Simulation results before and after change (at steady states)
TimeSav[VA]Pav[W]Qav[VAr]Dav[VAd}PF[]P1av[W]P0av[W]
t=0.1s30981264282800.40812640
t=0.16s2173174.9216600.08174.90

Urms=230V,f=50Hz,threephasesystem.

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (39)

Table 3.Load parameters for steady states before and after load change in diode connection.

Table 3.Load parameters for steady states before and after load change in diode connection.

Load R[Ω]L[mH]α [deg}
before 41.911000
after 83.821000

Urms=230V,f=50Hz,threephasesupplysystem.

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (40)

Table 4.Load parameters for steady states before and after load change in controlled rectifier connection.

Table 4.Load parameters for steady states before and after load change in controlled rectifier connection.

Load R[Ω]L[mH]α [deg}
before 41.911000
after 41.9110030

Urms=230V,f=50Hz,threephasesupplysystem.

Power Components Mean Values Determination Using New Ip-Iq Method for Transients (41)

Table 5.Load parameters for steady states before and after load change.

Table 5.Load parameters for steady states before and after load change.

Load R[Ω]L[mH]ZΩτ[ms]φ[°el.]cosφsinφ[]
before 9.243.9316.584.77556.310.5500.835
after 18.443.9323.002.38737.870.7970.604

Urms=230V,f=50Hz,threephasesystem.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.


© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Power Components Mean Values Determination Using New Ip-Iq Method for Transients (2024)
Top Articles
Latest Posts
Article information

Author: Mr. See Jast

Last Updated:

Views: 5869

Rating: 4.4 / 5 (75 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Mr. See Jast

Birthday: 1999-07-30

Address: 8409 Megan Mountain, New Mathew, MT 44997-8193

Phone: +5023589614038

Job: Chief Executive

Hobby: Leather crafting, Flag Football, Candle making, Flying, Poi, Gunsmithing, Swimming

Introduction: My name is Mr. See Jast, I am a open, jolly, gorgeous, courageous, inexpensive, friendly, homely person who loves writing and wants to share my knowledge and understanding with you.